수치해석 - 가우스 소거법 가우스 조던법 그리고 LU분해법에 대한 비교

1. 수치해석 - 가우스 소거법 가우스 조던.hwp
2. 수치해석 - 가우스 소거법 가우스 조던.pdf
수치해석 - 가우스 소거법 가우스 조던법 그리고 LU분해법에 대한 비교
수치해석 - 가우스 소거법 가우스 조던법 그리고 LU분해법에 대한 비교

1. 개요.
수치해석 수업시간에 우리는 가우스 소거법과 조던법 그리고 Lu분해법에 대하여 배워보았다. 이것들은 직접법으로서 매우 엄밀한 해를 구할수 있지만 그 매트릭스가 대략 25개를 넘어가면 사용할 수 없게 된다고 한다. 우리는 책에서 간단한 예제를 통하여 그 사용법을 익혀 보고자 한다. 예제 3.25와 연습문제 6.(a)(b), 7.(a)(d)를 통하여 익혀 보고 각각을 가우스 소거법 조던법 그리고 Lu분해법에 의하여 풀어보고 피봇팅과 스캘링을 하고 안하고의 값의 차이를 비교해 보기로 하였다. 우리는 이 것에서 스캘링과 피봇팅이 좀더 해에 가깝게 나온다는 사실을 알 수 있을 것으로 기대한다.

2. 각 문제들
예제 3.25그림은 파이프로 연결된 3개의 반응기를 나타낸 것이다. 각각의 파이프를 통과하는 화학물의 질량유량은 유량(Q)과 반응기의 밀도()와의 곱으로 나타낼 수 있다. 시스템이 정상상태라면 각 반응기를 출입하는 질량유량은 일정하다. 반응기들에 대한 질량 평형방정식을 유도하고, 각 반응기의 밀도에 대한 3원 연립방정식을 풀어라.

연습문제 6. 다음 연립방정식을 Gauss-Jordan 소거법을 이용하여 풀어라.

(a) (b)

연습문제 7. 다음 연립방정식을 Crout 법을 이용해 손으로 풀고, 그 결과를 컴퓨터 프로그램의 결과와 비교하여라.
(a) (d)

3.각 방식들의 알고리즘
Gauss 소거법
....